Bacterial Thymidine Kinase as a Non-Invasive Imaging Reporter for Mycobacterium tuberculosis in Live Animals
نویسندگان
چکیده
BACKGROUND Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2'deoxy-2'-fluoro-beta-D-arabinofuranosyl)-5-[(125)I]-iodouracil ([(125)I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis. METHODOLOGY/PRINCIPAL FINDINGS We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 -- a strong constitutive mycobacterial promoter. [(125)I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis P(hsp60) TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis P(hsp60) TK strain actively accumulated [(125)I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis P(hsp60) TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested. CONCLUSION We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research.
منابع مشابه
Autoluminescent Mycobacterium tuberculosis for Rapid, Real-Time, Non-Invasive Assessment of Drug and Vaccine Efficacy
Preclinical efforts to discover and develop new drugs and vaccines for tuberculosis are hampered by the reliance on colony-forming unit (CFU) counts as primary outcomes for in vivo efficacy studies and the slow growth of Mycobacterium tuberculosis. The utility of bioluminescent M. tuberculosis reporter strains for real-time in vitro and ex vivo assessment of drug and vaccine activity has been d...
متن کاملRapid in vivo assessment of drug efficacy against Mycobacterium tuberculosis using an improved firefly luciferase
OBJECTIVES In vivo experimentation is costly and time-consuming, and presents a major bottleneck in anti-tuberculosis drug development. Conventional methods rely on the enumeration of bacterial colonies, and it can take up to 4 weeks for Mycobacterium tuberculosis to grow on agar plates. Light produced by recombinant bacteria expressing luciferase enzymes can be used as a marker of bacterial lo...
متن کاملApplication of Fluorescent Protein Expressing Strains to Evaluation of Anti-Tuberculosis Therapeutic Efficacy In Vitro and In Vivo
The slow growth of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), hinders development of new diagnostics, therapeutics and vaccines. Using non-invasive real-time imaging technologies to monitor the disease process in live animals would facilitate TB research in all areas. We developed fluorescent protein (FP) expressing Mycobacterium bovis BCG strains for in vivo im...
متن کاملOptimisation of Bioluminescent Reporters for Use with Mycobacteria
BACKGROUND Mycobacterium tuberculosis, the causative agent of tuberculosis, still represents a major public health threat in many countries. Bioluminescence, the production of light by luciferase-catalyzed reactions, is a versatile reporter technology with multiple applications both in vitro and in vivo. In vivo bioluminescence imaging (BLI) represents one of its most outstanding uses by allowi...
متن کاملDiscovery of bicyclic thymidine analogues as selective and high-affinity inhibitors of Mycobacterium tuberculosis thymidine monophosphate kinase.
Thymidine monophosphate kinase of Mycobacterium tuberculosis (TMPKmt) represents an attractive target for selectively blocking bacterial DNA synthesis. Hereby, we report on the discovery of a novel class of bicyclic nucleosides (10 and 11) and one dinucleoside (12), belonging to the most selective inhibitors of TMPKmt discovered so far.
متن کامل